Đang tải...


Giới thiệu
Điều khoản
© 2018 Bingbe Inc
Dâu tây đã đăng 1 câu hỏi trên OLM
2019-2-12

Tìm x ; y ; z

x ( x - y + z ) = -11

y ( y - z - x ) = 25

z ( z + x - y ) = 35

0
1

Ta có : 

\(x\left(x-y+z\right)+y\left(y-z-x\right)+z\left(z+x-y\right)=-11+25+35\)

\(\Leftrightarrow\)\(x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=49\)

\(\Leftrightarrow\)\(\left(x-y+z\right)\left(x-y+z\right)=49\)

\(\Leftrightarrow\)\(\left(x-y+z\right)^2=7^2\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-y+z=7\\x-y+z=-7\end{cases}}\)

Từ giả thiết suy ra : 

\(x=\frac{-11}{x-y+z}=\frac{-11}{7}\) hoặc \(x=\frac{-11}{x-y+z}=\frac{-11}{-7}=\frac{11}{7}\)

\(y=\frac{25}{x-y+z}=\frac{25}{7}\) hoặc \(y=\frac{25}{x-y+z}=\frac{25}{-7}=\frac{-25}{7}\)

\(z=\frac{35}{x-y+z}=\frac{35}{7}=5\) hoặc \(z=\frac{35}{x-y+z}=\frac{35}{-7}=-5\)

Vậy \(x=\frac{-11}{7};y=\frac{25}{7};z=5\) hoặc \(x=\frac{11}{7};y=\frac{-25}{7};z=-5\)

Chúc bạn học tốt ~ 

1Trả lời
Loading